Dec.-22-0145

MA-401 (Optimization and Calculus of Variations) (Common for B.Tech. all Branches)

B. Tech. 4th (CBCS)

Time: 3 Hours

Max. Marks: 60

(10)

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation

Note: Attempt five Questions in all. Selecting One Question from each section A, B, C and D. Section E is Compulsory.

SECTION - A

- 1. Using duality solve the problem : Maximize Z = 2x + y subject to $x + 2y \le 10$, $x + y \le 6$, $x - y \le 2$, $x - 2y \le 1$, $x, y \ge 0$. (10)
- 2. Solve the following LPP by Simplex Method.

Maximize Z = 5x + 3y subject to $x + y \le 2$, $5x + 2y \le 10$, $3x + 8y \le 12$ and $x, y \ge 0$.

SECTION - B

Solve the following assignment problem represented by the

	1	11	""	T	
	 		-	N	V
A	6	5	8	11	16
В	1	13	16	1	10
С	16	11	8	8	8
D	9	14	 		0
		14	12	10	16
E	10	13	11	8	16

4. Solve the following transportation problem:

ransportation problem:						
	Sources		Destination			7
-		X·	Y	Z	Supply	
-	А	2	7	4	50	
	В	3	3	7	70	-
	С	5	4	1		
	D	1	6	,	80	
	Demand	70		2	140	
L	- smarid	70	90	180	340	(10)

SECTION - C

5. Draw a network diagram on the basis of the following data:

data:				
Duration (Days)	Activity	Duration (Days)		
2	4-8	8		
2	5-6			
1		4		
4		3		
4	7-8	3		
1	8-9	5		
5	9-10	2		
	2 2 1 4 1	2 4-8 2 5-6 1 6-9 4 7-8 1 8-9 5 9-10		

Find the critical path, total duration and slack times. (10)

6. Solve the non-linear programming problem. Maximize $Z = -x_1^2 - x_2^2 - x_3^2 + 4x_1 + 6x_2$ subject to the constraints $x_1 + x_2 \le 2$, $2x_1 + 3x_2 \le 12$; $x_1, x_2 \ge 0$. (10)

SECTION - D

7. (i) Solve the Euler's equation for the functional: $\int_{-\infty}^{x_1} \langle y_1, y_2 \rangle_{y_1, y_2} dy$

 $\int_{x_0}^{x_1} (x + y') y' dx.$ (5)

- (ii) Find the extremals of the functional $\int_{x_0}^{x_1} \left(\frac{{y'}^2}{x^3} \right) dx$. (5)
- (8) (i) Prove the geodesics on a right circular cylinder of radius a. (5)
 - (ii) Find the plane curve of fixed perimeter and maximum area.

(5)

SECTION - E (Compulsory Question)

- 9. (i) Define optimization problem.
 - (ii) Define linear programming problem.
 - (iii) Define basic variables.
 - (iv) Define assignment problem.
 - (v) → Define convexity.
 - (vi) Define basic feasible solution.
 - (vii) Define optimal solution.
 - (viii) Define duality.
 - (ix) Define geodesics.
 - (x) Define Euler's equation.

 $(10 \times 2 = 20)$